Eigenanalysis for Membranes with Stringers Using the Methods of Fundamental Solutions and Domain Decomposition

نویسندگان

  • C. W. Chen
  • D. L. Young
  • K. Murugesan
  • C. C Tsai
چکیده

We use a meshless numerical method to analyze the eigenanalysis of thin circular membranes with degenerate boundary conditions, composed by different orientations and structures of stringers. The membrane eigenproblem is studied by solving the two-dimensional Helmholtz equation utilizing the method of fundamental solutions and domain decomposition technique as well. The method of singular value decomposition is adopted to obtain eigenvalues and eigenvectors of the resulting system of global linear equation. The proposed novel numerical scheme was first validated by three circular membranes which are structured with a single edge stringer, two opposite edge stringers and an internal stringer. Present results for those three cases match very well with the solutions obtained by the analytical approach as well as by methods of dual boundary element, and finite element. The analysis is then extended to solve a completely new problem of a circular membrane with a cross stringer at the center of the membrane. We illustrate the proposed innovative numerical scheme which is simpler and more efficient to solve Helmholtz problems with degenerate boundary conditions. The good features of this scheme are not depending upon the treatments of mesh, singularity, hypersingularity, numerical integration and iterative procedure, which are generally required by other conventional mesh-dependent methods. keyword: eigenanalysis, Helmholtz equation, method of fundamental solutions, domain decomposition method, degenerate boundary condition 1 Department of Civil Engineering & Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan 2 Correspond to: D.L. Young, Fax: +886-2-23626114, E-mail: [email protected] 3 Department of Information Technology, Toko University, Chia-Yi County, Taiwan

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamental Solutions of Dynamic Poroelasticity and Generalized Termoelasticity

Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by...

متن کامل

Updating finite element model using frequency domain decomposition method and bees algorithm

The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...

متن کامل

Output-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data

The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...

متن کامل

An improved hybrid image watermarking scheme in shearlet and wavelet domain

Watermarking is one of the best solutions for copyright protection and authentication of multimedia contents. In this paper a hybrid scheme is proposed using wavelet and shearlet transforms with singular value decomposition. For better security, Arnold map is used for encryption. Examining the results and comparing with other methods show that this hybrid proposed scheme with simultaneous utili...

متن کامل

THE ELZAKI HOMOTOPY PERTURBATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS

In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear and nonlinear differential equations with a variable coffecient. This method is a combination of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform is to overcome the deficiencies that mainly caused by unsatised conditions in some semi-analytical methods such as Homotopy Perturbat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005